QMCPy Documentation
- About Our QMC Software Community
- Contributing to QMCSoftware
- License
- QMCPy Documentation
- Discrete Distribution Class
- True Measure Class
- Integrand Class
- Abstract Integrand Class
- Custom Function
- Keister Function
- Box Integral
- European Option
- Asian Option
- Multilevel Call Options with Milstein Discretization
- Linear Function
- Bayesian Logistic Regression
- Genz Function
- Ishigami Function
- Sensitivity Indices
- UM-Bridge Wrapper
- Sin 1d
- Multimodal 2d
- Four Branch 2d
- Hartmann 6d
- Stopping Criterion Algorithms
- Abstract Stopping Criterion Class
- Guaranteed Digital Net Cubature (QMC)
- Guaranteed Lattice Cubature (QMC)
- Bayesian Lattice Cubature (QMC)
- Bayesian Digital Net Cubature (QMC)
- CLT QMC Cubature (with Replications)
- Guaranteed MC Cubature
- CLT MC Cubature
- Continuation Multilevel QMC Cubature
- Multilevel QMC Cubature
- Continuation Multilevel MC Cubature
- Multilevel MC Cubature
- Probability of Failure with Guassian Processes
- Utilities
- Demos
- A QMCPy Quick Start
- Welcome to QMCPy
- Integration Examples using QMCPy package
- QMCPy for Lebesgue Integration
- Scatter Plots of Samples
- A Monte Carlo vs Quasi-Monte Carlo Comparison
- Quasi-Random Sequence Generator Comparison
- Importance Sampling Examples
- NEI (Noisy Expected Improvement) Demo
- QEI (Q-Noisy Expected Improvement) Demo for Blog
- Basic Ray Tracing
- A closer look at QMCPy’s Sobol’ generator
- Custom Dimensions
- Some True Measures
- Comparison of multilevel (Quasi-)Monte Carlo for an Asian option problem
- Control Variates in QMCPy
- Elliptic PDE
- Gaussian Diagnostics
- ML Sensitivity Indices
- Vectorized QMC
- Vectorized QMC (Bayesian)
- UM-Bridge with QMCPy
- Random Lattice Generators Are Not Bad
- Challenges in Developing Great QMC Software
- Purdue University Colloquium Talk
- Genz Function in Dakota and QMCPy
- Monte Carlo for Vector Functions of Integrals
- Probability of Failure Estimation with Gaussian Processes
- Linear Matrix Scrambling and Digital Shift for Halton
- Here we explain Linear Matrix Scrambling:
- Here we explain Digital Shift:
- Here we explain Linear Matrix Scrambling Combined with Digital Shift:
- Here we set up the QMCPY environment:
- Here we explain the parameters of the init function:
- Here we explain the parameters of the gen_samples function:
- Comparison between LMS, DS, and LMS_DS:
- Examples of Linear Matrix Scrambling with plots:
- Examples of Digital Shifts with plots:
- Examples of Linear Matrix Scrambling Combined with Digital Shift with plots:
- Speed Comparison Between Different Halton Randomize Options:
- The QMCPY Plot Projection Function for Discrete Distribution and True Measure
- Argonne Lab Talk