QEI (Q-Noisy Expected Improvement) Demo for Blog
from qmcpy import *
import numpy as np
from scipy.linalg import solve_triangular, cho_solve, cho_factor
from scipy.stats import norm
import matplotlib.pyplot as pyplot
%matplotlib inline
lw = 3
ms = 8
Problem setup
Here is the current data ( and
values with noise)
from which we want to build a GP and run a Bayesian optimization.
def yf(x):
return np.cos(10 * x) * np.exp(.2 * x) + np.exp(-5 * (x - .4) ** 2)
xplt = np.linspace(0, 1, 300)
yplt = yf(xplt)
x = np.array([.1, .2, .4, .7, .9])
y = yf(x)
v = np.array([.001, .05, .01, .1, .4])
pyplot.plot(xplt, yplt, linewidth=lw)
pyplot.plot(x, y, 'o', markersize=ms, color='orange')
pyplot.errorbar(x, y, yerr=2 * np.sqrt(v), marker='', linestyle='', color='orange', linewidth=lw)
pyplot.title('Sample data with noise');

Computation of the qEI quantity using qmcpy
One quantity which can appear often during BO is a computation involving
“next points” to sample in a BO process; in the standard
formulation this quantity might involve just
, but
is also of interest for batched evaluation in parallel.
This quantity is defined as
The example I am considering here is with but this quantity
could be made larger. Each of these QEI computations (done in a
vectorized fashion in production) would be needed in an optimization
loop (likely powered by CMAES or some other high dimensional nonconvex
optimization tool). This optimization problem would take place in a
dimensional space, which is one aspect which usually prevents
from being too large.
Note that some of this will look much more confusing in , but
it is written here in a simplified version.
GP model definition (kernel information) and qEI definition
shape_parameter = 4.1
process_variance = .9
fudge_factor = 1e-10
def gaussian_kernel(x, z):
return process_variance * np.exp(-shape_parameter ** 2 * (x[:, None] - z[None, :]) ** 2)
def gp_posterior_params(x_to_draw):
n = len(x_to_draw)
kernel_prior_data = gaussian_kernel(x, x)
kernel_cross_matrix = gaussian_kernel(x_to_draw, x)
kernel_prior_plot = gaussian_kernel(x_to_draw, x_to_draw)
prior_cholesky = np.linalg.cholesky(kernel_prior_data + np.diag(v))
partial_cardinal_functions = solve_triangular(prior_cholesky, kernel_cross_matrix.T, lower=True)
posterior_covariance = kernel_prior_plot - np.dot(partial_cardinal_functions.T, partial_cardinal_functions) + fudge_factor * np.eye(n)
full_cardinal_functions = solve_triangular(prior_cholesky.T, partial_cardinal_functions, lower=False)
posterior_mean = np.dot(full_cardinal_functions.T, y)
return posterior_mean,posterior_covariance
def gp_posterior_draws(x_to_draw, mc_strat, num_posterior_draws, posterior_mean, posterior_covariance):
q = len(x_to_draw)
if mc_strat == 'iid':
dd = IIDStdUniform(q)
elif mc_strat == 'lattice':
dd = Lattice(q)
elif mc_strat == 'sobol':
dd = Sobol(q)
g = Gaussian(dd,posterior_mean,posterior_covariance)
posterior_draws = g.gen_samples(num_posterior_draws)
return posterior_draws
def compute_qei(posterior_draws):
y_gp = np.fmax(np.max(posterior_draws.T - max(y), axis=0), 0)
return y_gp
Demonstrate the concept of qEI on 2 points
num_posterior_draws = 2 ** 7
Np = (25, 24)
X, Y = np.meshgrid(np.linspace(0, 1, Np[1]), np.linspace(0, 1, Np[0]))
xp = np.array([X.reshape(-1), Y.reshape(-1)]).T
mu_post,sigma_cov = gp_posterior_params(xplt)
y_draws = gp_posterior_draws(xplt, 'lattice', num_posterior_draws,mu_post,sigma_cov).T
qei_vals = np.empty(len(xp))
for k, next_x in enumerate(xp):
mu_post,sigma_cov = gp_posterior_params(next_x)
gp_draws = gp_posterior_draws(next_x, 'sobol', num_posterior_draws,mu_post,sigma_cov)
qei_vals[k] = compute_qei(gp_draws).mean()
Z = qei_vals.reshape(Np)
fig, axes = pyplot.subplots(1, 3, figsize=(14, 4))
ax = axes[0]
ax.plot(xplt, yplt, linewidth=lw)
ax.plot(x, y, 'o', markersize=ms, color='orange')
ax.errorbar(x, y, yerr=2 * np.sqrt(v), marker='', linestyle='', color='orange', linewidth=lw)
ax.set_title('Sample data with noise')
ax.set_ylim((-2.3, 2.6))
ax = axes[1]
ax.plot(xplt, y_draws, linewidth=lw, color='b', alpha=.05)
ax.plot(x, y, 'o', markersize=ms, color='orange')
ax.errorbar(x, y, yerr=2 * np.sqrt(v), marker='', linestyle='', color='orange', linewidth=lw)
ax.set_title(f'{num_posterior_draws} GP posterior draws')
ax.set_ylim((-2.3, 2.6))
ax = axes[2]
h = ax.contourf(X, Y, Z)
ax.set_xlabel('First next point')
ax.set_ylabel('Second next point')
ax.set_title('qEI for q=2 next points')
cax = fig.colorbar(h, ax=ax)
cax.set_label('qEI')
fig.tight_layout()

Choose some set of next points against which to test the computation
Here, we consider , which is much more costly to compute than
the
demonstration above.
Note This will take some time to run. Use fewere num_repeats
to
reduce the cost.
# paramters
next_x = np.array([0.158, 0.416, 0.718, 0.935, 0.465])
num_posterior_draws_to_test = 2 ** np.arange(4, 20)
d = len(next_x)
mu_post,sigma_cov = gp_posterior_params(next_x)
# get reference answer with qmcpy
integrand = CustomFun(
true_measure = Gaussian(Sobol(d),mu_post,sigma_cov),
g = compute_qei)
stopping_criterion = CubQMCSobolG(integrand, abs_tol=5e-7)
reference_answer,data = stopping_criterion.integrate()
print(data)
Solution: 0.0244
CustomFun (Integrand Object)
Sobol (DiscreteDistribution Object)
d 5
randomize 1
graycode 0
seed [68566 92413 32829 13022 69017]
mimics StdUniform
dim0 0
Gaussian (TrueMeasure Object)
mean [ 0.807 0.371 1.204 -0.455 0.67 ]
covariance [[ 1.845e-02 -2.039e-03 1.150e-04 1.219e-04 -5.985e-03]
[-2.039e-03 1.355e-02 6.999e-04 -1.967e-03 2.302e-02]
[ 1.150e-04 6.999e-04 8.871e-02 2.043e-02 5.757e-03]
[ 1.219e-04 -1.967e-03 2.043e-02 2.995e-01 -9.482e-03]
[-5.985e-03 2.302e-02 5.757e-03 -9.482e-03 6.296e-02]]
decomp_type pca
CubQMCSobolG (StoppingCriterion Object)
abs_tol 5.00e-07
rel_tol 0
n_init 2^(10)
n_max 2^(35)
LDTransformData (AccumulateData Object)
n_total 2^(22)
solution 0.024
error_bound 4.15e-07
time_integrate 4.426
# generate data
num_posterior_draws_to_test = 2 ** np.arange(4, 20)
vals = {}
num_repeats = 50
mc_strats = ('iid', 'lattice', 'sobol')
for mc_strat in mc_strats:
vals[mc_strat] = []
for num_posterior_draws in num_posterior_draws_to_test:
all_estimates = []
for _ in range(num_repeats):
y_draws = gp_posterior_draws(next_x, mc_strat, num_posterior_draws,mu_post,sigma_cov)
all_estimates.append(compute_qei(y_draws).mean())
vals[mc_strat].append(all_estimates)
vals[mc_strat] = np.array(vals[mc_strat])
fig, ax = pyplot.subplots(1, 1, figsize=(6, 4))
colors = ('#F5811F', '#A23D97', '#00B253')
alpha = .3
for (name, results), color in zip(vals.items(), colors):
bot = np.percentile(abs(results - reference_answer), 25, axis=1)
med = np.percentile(abs(results - reference_answer), 50, axis=1)
top = np.percentile(abs(results - reference_answer), 75, axis=1)
ax.loglog(num_posterior_draws_to_test, med, label=name, color=color)
ax.fill_between(num_posterior_draws_to_test, bot, top, color=color, alpha=alpha)
ax.loglog(num_posterior_draws_to_test, .1 * num_posterior_draws_to_test ** -.5, '--k', label='$O(N^{-1/2})$')
ax.loglog(num_posterior_draws_to_test, .25 * num_posterior_draws_to_test ** -1.0, '-.k', label='$O(N^{-1})$')
ax.set_xlabel('N - number of points')
ax.set_ylabel('Accuracy')
ax.legend(loc='lower left')
ax.set_title(f'Statistics from {num_repeats} runs');
# plt.savefig('qei_convergence.png');

# parameters
names = ['IID','Lattice','Sobol']
epsilons = [
[2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2], # iid nodes
[5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2], # lattice
[5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2]] # sobol
trials = 25
# initialize time data
times = {names[j]:np.zeros((len(epsilons[j]),trials),dtype=float) for j in range(len(names))}
n_needed = {names[j]:np.zeros((len(epsilons[j]),trials),dtype=float) for j in range(len(names))}
# run tests
for t in range(trials):
print(t)
for j in range(len(names)):
for i in range(len(epsilons[j])):
if j == 0:
sc = CubMCG(CustomFun(Gaussian(IIDStdUniform(d),mu_post,sigma_cov),compute_qei),abs_tol=epsilons[j][i],rel_tol=0)
elif j == 1:
sc = CubQMCLatticeG(CustomFun(Gaussian(Lattice(d),mu_post,sigma_cov),compute_qei),abs_tol=epsilons[j][i],rel_tol=0)
else:
sc = CubQMCSobolG(CustomFun(Gaussian(Sobol(d),mu_post,sigma_cov),compute_qei),abs_tol=epsilons[j][i],rel_tol=0)
solution,data = sc.integrate()
times[names[j]][i,t] = data.time_integrate
n_needed[names[j]][i,t] = data.n_total
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
fig,axs = pyplot.subplots(1, 3, figsize=(22, 6))
colors = ('#245EAB', '#A23D97', '#00B253')
light_colors = ('#A3DDFF', '#FFBCFF', '#4DFFA0')
alpha = .3
def plot_fills(eps,data,name,color,light_color):
bot = np.percentile(data, 5, axis=1)
med = np.percentile(data, 50, axis=1)
top = np.percentile(data, 95, axis=1)
ax.loglog(eps, med, label=name, color=color)
ax.fill_between(eps, bot, top, color=light_color)
return med
for i,(nt_data,label) in enumerate(zip([times,n_needed],['time','n'])):
ax = axs[i+1]
# iid plot
eps_iid = np.array(epsilons[0])
data = nt_data['IID']
med_iid = plot_fills(eps_iid,data,'IID',colors[0],light_colors[0])
# lattice plot
eps = np.array(epsilons[1])
data = nt_data['Lattice']
med_lattice = plot_fills(eps,data,'Lattice',colors[1],light_colors[1])
# sobol plot
eps = np.array(epsilons[2])
data = nt_data['Sobol']
med_sobol = plot_fills(eps,data,'Sobol',colors[2],light_colors[2])
# iid bigO
ax.loglog(eps_iid, (med_iid[0]*eps_iid[0]**2)/(eps_iid**2), '--k', label=r'$\mathcal{O}(1/\epsilon^2)$')
# ld bigO
ax.loglog(eps, ((med_lattice[0]*med_sobol[0])**.5 *eps[0]) / eps , '-.k', label=r'$\mathcal{O}(1/\epsilon)$')
# metas
ax.set_xlabel(r'$\epsilon$')
ax.set_ylabel(label)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.legend(loc='lower left',frameon=False)
ax.set_title(f'Statistics from {trials} runs')
# plot sample data
ax = axs[0]
ax.plot(xplt, yplt, linewidth=lw)
ax.plot(x, y, 'o', markersize=ms, color='orange')
ax.errorbar(x, y, yerr=2 * np.sqrt(v), marker='', linestyle='', color='orange', linewidth=lw)
ax.set_title('Sample data with noise')
ax.set_xlim([0,1])
ax.set_xticks([0,1])
ax.set_ylim([-3, 3])
ax.set_yticks([-3,3]);
